The Demographic Causes of Population **Growth and Decline in Snail Kites**

Robert (Rob) Fletcher Brian Reichert Wiley Kitchens, USGS

Contact: robert.fletcher@ufl.edu; 352-846-0632

Population biology and conservation

Sea Level Risks - Florida

McCleery et al. (2015)

Crowder et al. (1994)

A population framework for conservation

Assessment:

Population size & trends

Diagnosis, part I:

Demography & vital rates

Diagnosis, part II:

Environmental factors influencing key vital rates

Prescription:

Management that can mitigate stressors

Why snail kites?

- ☐ Critically endangered
- ☐ Wetland dependent
- ☐ Extreme dietary specialist
- ☐ Requires a large spatial extent
- ☐ Confined to central and south Florida
- ☐ But integrates entire system
- ☐ Closely tied to hydrology and water management

The monitoring program:

- 6 intra-annual, airboat surveys (~ 3 weeks apart; 1992 to present) to estimate population trends
- Nest monitoring during breeding season and banding of young
- Over 3400 birds banded; over 3300 nests monitored

Assessment: Population size and trends

Population growth rates and kite trends

Diagnosis: Demography and vital rates

For entire population in Florida

$$Numbers_t =$$

 $(Births - Deaths) N_{t-1}$

$$\lambda = N_t/N_{t-1} =$$
Births - Deaths

Reproduction and survival

For specific wetlands in Florida

$$Numbers_t =$$
 $(Births - Deaths + Immigration - Emigration) N_{t-1}$

$$\lambda = N_t/N_{t-1} =$$
 $Births - Deaths + Immigration - Emigration$

Movement among wetlands in Florida

The contribution of vital rates to population growth: interpreting limiting factors

- Population projection models and perturbation analysis
- Prospective versus retrospective understanding of limiting factors
 - Prospective: if one could change a demographic parameter, which would be most important?
 - Retrospective: Which demographic parameters best explained observed changes in population growth?

$$\mathbf{A} = \begin{bmatrix} F_s & F_a \\ P_s & P_a \end{bmatrix}$$

F= fertility

(breeding/recruitment)

P = survival

S = subadult

a = adult

Retrospective analysis regarding change in population growth rates:

Vital rates that explain variation in population growth 1996-2014

Rates considered:

- Juvenile apparent survival
- Adult apparent survival
- Annual fecundity: number of offspring / female (Ricklefs & Bloom 1977)

Vital rates that explain variation in population growth 1996-2014

Rates considered:

- Juvenile apparent survival
- Adult apparent survival
- Annual fecundity: number of offspring / female (Ricklefs & Bloom 1977)

Rates explaining variation:

Juvenile survival

Vital rates that explain variation in population growth 1996-2014

Rates considered:

- Juvenile apparent survival
- Adult apparent survival
- Annual fecundity: number of offspring / female (Ricklefs & Bloom 1977)

Rates explaining variation:

- Juvenile survival
- Annual Fecundity
- Annual Fecundity two years prior

Reproductive rates that drive fecundity

- Breeding probability
- Nest survival
- Number of young fledged/successful nest
- Renesting
- Breeding season length

Reproductive rates that drive fecundity

- Breeding probability
- Nest survival
- Number of young fledged/successful nest
- Renesting
- Breeding season length

Sensitivity analysis suggests fecundity most sensitive to **nest survival**

Fecundity most correlated with **nest survival**

Ricklefs & Bloom (1977), Etterson et al. (2011)

From total population to regional trends

- Kites move widely across central and south Florida
- Thought to be a panmictic population

Bennetts & Kitchens (1997) Meyer et al. 2011; this session

From total population to regional trends

- Kites move widely across central and south Florida
- Thought to be a panmictic population
- But, demographic rates (e.g. survival) vary across the region
- And, recently discovered strong breeding fidelity:

Site-level:

~40% natal philopatry, 67% breeding philopatry Region-level:

~90% philopatry in Everglades, Kissimmee River Valley

Geographic structure in breeding dispersal

How regions have contributed to population growth: Contribution from northern region has increased since 2007

Other = includes sites not classified into regions and unsampled, peripheral sites

How regions have contributed to population growth: Contribution from northern region driven by increase in recruitment

Extra slides

Survival estimates and kite trends

Mark-recapture and minimum number known alive

- Number of birds banded
- Number of banded adults resighted
- Minimum number known to be alive

3472 total banded kites from 1992 through 2014 **7805 total resights** 1992 through 2014 (during survey season)

Reverse Multistate CMR models to estimate demographic contributions

From total population to regional trends

- Kites move widely across central and south Florida
- Thought to be a panmictic population
- But, recently discovered strong breeding fidelity

	Natal region			
Current nesting region	Ever	KRV	Okee	Other
Everglades	0.90	0.03	0.06	0.01
Kissimmee River				
Valley	0.06	0.89	0.04	0.01
Okeechobee	0.17	0.44	0.28	0.10
Other	0.39	0.09	0.07	0.45

Bennetts & Kitchens (1997) Meyer et al. 2011; this session

Regional structure in demographic rates

Northern Region

- Lower adult apparent survival
- No weather effects observed

Southern Region

- Higher adult apparent survival
- Weather effects observed (dry conditions)

How regions have contributed to population growth: Local dynamics increasing in importance over time

Local dynamics: juvenile recruitment and adult survival / fidelity